Step of Proof: l_before_antisymmetry
11,40
postcript
pdf
Inference at
*
1
2
0
I
of proof for Lemma
l
before
antisymmetry
:
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5. no_repeats(
T
;
l
)
6. [
x
;
y
]
l
7. [
y
;
x
]
l
8. [
x
;
x
]
l
False
latex
by PERMUTE{1:n, 1:n, 2:n, 3:n}
latex
1
: .....wf..... NILNIL
1:
5.
x
,
y
:
T
. [
x
;
y
]
l
(
(
x
=
y
))
1:
6. [
x
;
y
]
l
1:
7. [
y
;
x
]
l
1:
8. [
x
;
x
]
l
1:
x
T
2
: .....antecedent..... NILNIL
2:
5.
x
,
y
:
T
. [
x
;
y
]
l
(
(
x
=
y
))
2:
6. [
x
;
y
]
l
2:
7. [
y
;
x
]
l
2:
8. [
x
;
x
]
l
2:
[
x
;
x
]
l
3
:
3:
5.
x
,
y
:
T
. [
x
;
y
]
l
(
(
x
=
y
))
3:
6. [
x
;
y
]
l
3:
7. [
y
;
x
]
l
3:
8. [
x
;
x
]
l
3:
9.
(
x
=
x
)
3:
False
.
Definitions
x
:
A
B
(
x
)
,
P
Q
,
f
(
a
)
,
x
:
A
B
(
x
)
,
s
=
t
,
A
,
False
,
[]
,
[
car
/
cdr
]
,
L1
L2
,
no_repeats(
T
;
l
)
,
type
List
,
Type
,
P
&
Q
,
P
Q
,
x
before
y
l
,
x
:
A
.
B
(
x
)
,
P
Q
,
t
T
Lemmas
no
repeats
iff
origin